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Abstract

Ideally, an adaptive optical control system would have instantaneous temporal response and infinite spatial

bandwidth. In real systems, the response time of the adaptive optical control system is limited by the integration

time of the wave front sensor, the computational time of the control algorithm, and the actuator response time.

Additionally, finite inter actuator spacing limits the deformable mirror's ability to reproduce spatial frequencies

having a period less than twice this spacing. Although analyses general enough to account for both the temporal

and spatial characteristics of the adaptive optical system exist, they are complex and require detailed information

regarding the wave front sensor, the deformable mirror, and the control algorithm. This investigation develops

a frequency domain model that describes performance effects of an adaptive optical system's temporal response

taking into account aperture piston and tilt removal and spatial bandwidth limitations due to finite subaperture

size. The unique aspect of this model is the relative ease with which performance characteristics of different

spatial and temporal system response functions can be investigated.
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The Effect of an Adaptive Optical System's Spatio-Temporal

Response on Imaging Performance

1. Introduction.

1.1 Background.

Adaptive optics are used to improve the real time imaging capabilities of large ground based telescopes

(9). As light from a celestial source passes through the earth's atmosphere, it suffers random phase delays across

its wave front. These phase delays are caused by turbulence induced fluctuations in the atmosphere's index

of refraction. Because of the effect of atmospheric turbulence, very large diameter telescopes have little more

resolving power than telescopes 0.1 to 0.2 meters in diameter (15)(19). By measuring and compensating for

wave front distortions, adaptive optics make it possible to achieve near diffraction limited performance of these

same very large telescopes (4). Figure 1.1 depicts a typical adaptive optic system. First, turbulence induced

phase distortions of a reference wave front are measured by a wave front sensor. This phase information is

then used by a computer to determine the optimal actuator weightings across the deformable mirror. Typically,

the computer implements an algorithm that minimizes the mean square error between the unaberrated reference

wave front and the wave front predicted to arrive at the image sensor. Lastly, the phase distortions are corrected

at the deformable mirror surface by complementary path length adjustments across the wave front, and the object

of interest is imaged.

Ideally. an adaptive optical control system would have instantaneous temporal response and infinite spatial

bandwidth. In real systems, the response time of the adaptive optical control system is limited by the integration

time of the wave front sensor, the computational time of the control algorithm, and the actuator response time.

Additionally. finite inter actuator spacing limits the deformable mirror's ability to reproduce spatial frequencies

having a period less than twice this spacing (19). As any one of these system parameters can be the limiting
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Figure 1.1. Representation of an adaptive optical system correcting for atmospheric tubulence.

factor in the system's imaging performance, it is invaluable in system design to have simple equations or models

that provide a point of departure for each parameter.

Response time, from wave front detection through actuator positioning, limits system performance because

the phase distortions across the wave front are continually changing in time. This results in an incorrect matching

between the deformable mirror and the aberrated wave front, especially for higher frequencies. In two recent

papers, Fried and Karr independently investigated the effect of time delay on the servo control loop of an adaptive

optical system (11)(2). Although their approaches are slightly different, both made the same assumptions and

determined the mean square phase error between the actual wave front and the sensed wave front to be:

02 = 28.4 (fG t) (1.1)

where fG is the well known Greenwood frequency and At is time delay between wave front sensing and actuator

repositioning (6). In their derivations Fried and Karr neglected the spatial frequency limitations of the deformable
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minror and approximated the atmospheric turbulence power spectrum by its high frequency asymptote ignoring

the inherent removal of piston and the possibility of tilt correction over the aperature. They also neglected

temporal bandwidth limitations due to the finite integration time of the wave front sensor, causing an unrealistic

equal weighting of all temporal frequencies across the spectrum. By equally weighting all frequencies, Fried and

Karr's results also reflect a higher than expected value of the mean square error for any time delay At. As the

delay time becomes longer, lower spatial frequency corrections of the deformable mirror become uncorrelated

with the incoming wave front increasing the residual mean square error.

The above cited analyses have broad applicability to systems that have both a wide spatial bandwidth

and very fast response time. Adaptive optical systems that meet these requirements are normally built only

for smaller aperture telescopes. The complexity and expense involved in producing adaptive optical systems

that attempt to meet these requirements for larger telescopes have driven designers to considering partial spatial

compensation (16). Systems that implement partial compensation have a lower spatial bandwidth and are not

adequately modeled by Eq (1.1). Although analyses general enough to account for both the temporal and spatial

characteristics of the adaptive optical system exist, they are complex and require detailed information regarding

the wave front sensor, the deformable mirror, and the control algorithm (22)(21).

1.2 Objective

The primary objective of this investigation is to develop a frequency domain approach, using linear

systems methods, that describes performance effects of an adaptive optical system's temporal response taking

into account aperture piston and tilt removal and spatial bandwidth limitations due to finite subaperture size. The

secondary objective is to address when use of our approach yields substantially different results than those of

Fried and Karr.
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Figure 1.2. Block diagram of an adaptive optical system's transfer function.

1.3 Approach

In this investigation, a frequency domain approach is used to predict the mean square value of the residual

phase error of a corrected wave front, qp,(i, t). Modeling the system transfer function of the adaptive optical

system as shown in Figure 1.2. the residual phase error of pc (;, 1) can be shown to equal:

a 2 = j df 1 - H(f)12W(f) (1.2)

where IV(f) is the temporal power spectrum of the wave front phase fluctuations due to atmospheric turbulence,

ýp(!, t). and H (f) is the transer function of the adaptive optical system. The input spectrum, W(f), is derived

as the Fourier transform of the temporal covariance, C,,(r) = (w(•, t)ýp(i, t + -r)), and will be developed

to account for inherent piston removal and tilt removal capability of present adaptive optical systems using

methods developed by Greenwood and Fried (8). The filtering action of the transfer function will be assumed

to be separable in time and space so that H1(f) = HT(f) • Hs(f). where HT(f) accounts for the system's

temporal delay and bandwidth and Hs (f) is the temporal equivalent spatial response of the deformable mirror.

It is important to note here that all filtering, both temporal and spatial, will be done in the temporal frequency

domain. For a given wave front spectrum, W(f), this approach lends itself to the investigation of arbitrary filter

functions due to the simple multiplication operations required to account for the filtering response in Eq (1.2).

This will be shown to be especially true of the temporal transfer function HT(f).
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1.4 Overview of Thesis

Chapter U1 reviews Greenwood and Fried's method of developing a piston and tilt removed spectrum of

wave front corrections for an adaptive optical system. Chapter M11 developes the temporal spectrum of wave front

phase aberations acounting for piston and tilt and developes a method for determining the temporal equivalent

spatial response of the deformable mirror. In chapter IV the result of the preceding chapter is evaluated for vah, es

of interest to current system designers and compared to results using Karr's and Fried's models. Conclusions are

drawn and recommendations made in chapter V.
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H. Literature Review.

This chapter reviews Greenwood and Fried's (GF) often referenced paper which describes the power

spectra of wave front corrector motion for circular correcting subapertures of a larger segmented circular mirror

(8). In their analyses, the correcting subapertures of the system are capable of independent piston and tilt motion.

and the power spectra for both types of motion are developed. Additionly. GF account for overall piston and

the possibility of overall tilt correction prior to the wave front reaching the segmented mirror. It is this aspect

of their development that is particularly useful in this investigation. Figure 2.1 depicts the wave front correction

process modeled by GF. Tilt of the wave front is removed as the best fit plane through the center of an aperture.

The center position of a correcting subaperture is given by F' and is referenced from the center of the overall

aperture. (see Figure 2.2). By allowing the subaperture size of the segmented mirror to approach zero, the piston

and tilt removed spectrum of the incident wa,,e front phase can be approximated by the piston and tilt removed

spectrum of the subaperture's piston motion at each point on the mirror.

To begin statistical modeling of a subapertures piston motion, it is first rxecessary to have an expression

for the vertical position of the subapertures as a function of time. GF find the time dependant piston position of

a subaperture of diameter d centered at position F, to be

S(t) = (i , t) - ýp (; , 0) - 16n D -2 .• ( ,t (2 .1)

where a single overbar denotes a spatial average over the subaperture, the double overbar denotes a spatial

average over the overall aperture of radius D, and p (;, t) the phase of the wave front prior to any corrections.

The first term of Eq (2.1) represents the average phase of the wave front over a subaperture centered at F1 in

the aperture at time t. Term two represents the average phase of the wave front over the entire aperture and its

inclusion accounts for the system's insensitivity to aperture piston. Lastly, term three accounts for the possibiiity

of aperture tilt removal by the adaptive optical system. In this equation, n = I indicates aperture tilt removal

and ?7 = 0 that no such compensation has occured.
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Figure 2.1

--- - - ---

Figure 2 .1 ."A one-dimensional representation of wave-front correction (vertical scale greatly expanded). (A)

Initial wave front at aperture plane, (B) wave front after overall tilt correction; local piston and tilt

shown for segment of size d = D/7, (C) residual wave front after compensation over all segments.

(8)."
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Figure 2.2. Top view of a subaperture centered at position Fi.
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To determine the power spectral density or spectrum of a real, stationary, zero mean, random process, we

first need to determine its covariance function. Fourier transforming the covariance function results in the power

spectral density. The temporal covariance of p(t) is defined as

C (r) = P () ¢ (t + (2.2)

GF substitute Eq (2.1) in Eq (2.2) and find the temporal covariance can be written in the following form:

CO (r) = I di: C 6, (F, r) T, (r (2.3)

where Cb, (F, -r) = (p (i, t) � (i + F, t + r)) and Tw (rj is a transfer function defining the effects of piston

and tilt removal at single points in the aperture. GF find T,, (r) to have the following form for a subaperture size

that approaches zero:

T, (r) = 6(r) + S, (f-) - S2 (r- (2.4)

where

{4n (-L) [(11) + (r) cos(O - €)] + 1}

8 x {arccos(•)-(i-)[1-(r)2]½} (2.5)
Sl~r-- 5 Dr) - ()(-[1 ()][1l+4 cos2(O-] <(•<

0, D

and
8 1+ 4n (a-)[(D) +(-DL) COs(- ], 0_<(• <

S(2.6)
1 1 -< ( rZ)

and r = r.,rl is the vector specifying the point of interest in the aperture. 0 = arg (r), = arg (Fi). and

r2 = f/r2 + r, + 2rr1 cos(O - 0). The actual derivation of the transfer function, , (F). ispres.ed by GE it

is important to recognize at this point that C,, (r) represents the covariance over a subaperture with zero diameter
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located at F1 and not over the entire aperture. Recall, we are considering a subaperture size that approaches zero

diameter to approximate the incident wave front phase.

GF use the following relationship to determine C6,, (F, r):

C6W (F', r)=C& (0, -r) - 1 D6, (F, 7-) (2.7)

where D6, (F, r) is the called the phase structure function by GF and is defined as:

D6w (F, r) = ([p (i, t) - p(i + F, t)] [,(i, t + r) - p(i+ F, t + r)]) (2.8)

Substituting Eq (2.7) in Eq (2.3), GF arrive at the important result:

C (r-) = - D6 ,(F,)T.(r (2.9)

where as shown by GF:

Jd• T.(-' =0. (2.10)

Note the inclusion of the delta function term in Eq (2.4). GF validate Eq (2.10) for a nonzero subaperlure diameter,

d, and when discussing the single point phase spectrum, state the delta function term can be disregarded. This is

only half true. The delta function has no impact on Eq (2.9) but is in fact necessary for Eq (2.10) to be valid.

Eq (2.9) can be Fourier transformed to give the single point temporal power spectrum of piston motion:

W (f) = -- f dF W6b(F,f)T ,(r-) (2.11)

where VV6' (ir, f) is the temporal Fourier transform of the phase difference structure function introduced in Eq

(2.8). This spectra will subsequently be referred to as the phase-difference spectrum.
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To evaluate Eq (2.11), only W6b (F, f) requires definition. GF mistakenly reference Lee and Harp (12)

(they should have referenced Tatarski (18) ) and define the single layer phase-difference power spectrum for a

plane wave reference as:

W6,(F, f) = 2.079(f /f. )-1/ 3 (fY)- x (D/ro)/13 sin 2(fr/f/) (2.12)

where f,, = is a normalizing variable that accounts for wind velocity. v, and aperture diameter, D. r,

is Fried's coherence length (a measure of the strength of a layer of atmospheric turbulence) (3), and r =r.

GF arrive at Eq (2.12) by simplifying the vectoral nature of W64,(F, f). GF assume the vector F and the wind

velocity V? are parallel for every pair of points across the aperture. The significance of this assumption will be

clarified in the next chapter. This definition of the phase difference power spectrum also assumes a Kolmogorov

spectrum of the atmospheric refractive index fluctuations with an infinite outer scale and an infinitely small inner

scale.

GF evaluate Eq (2.11) for the above phase difference spectrum and present their result in graphical form.

For perfect spatial wave front reconstruction, d = 0. they find the high frequencies roll off as f-`/ 3 and are

unaffected by piston and tilt correction. Regardless of subaperture size. GF find the low frequencies roll off

as either f- 4 /3 for overall tilt removal or f- 2 /3 for no tilt removal. GF also provide the necessary transfer

functions to evaluate Eq (2.11) for the case of non-zero subaperture size. The resulting spectra would include the

effects of piston and tilt removal and also finite bandwidth limitations of the deformable mirror. Initially, it seems

it may be possible to use the asymtotic approximations to represent the temporal phase spectrum of an incoming

aberrated wave front corrected for overall piston and tilt. However, the GF spectrum plots and approximations

are not valid models for the low frequency behavior of a piston and tilt phase spectrum. This is attributable to

the non-realizable assumption that the phase difference power spectrum is non-vectoral in nature (7). Eq (2.11)

and the transfer function T, (r-) are valid however, and in Chapter iML these equations will be used to determine

a more realistic single point phase power spectrum that accounts for aperture piston and tilt removal.
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III. Methodology

As stated briefly in Chapter L Eq (1.2) will be used to model the mean square phase exror performance

of an adaptive optical system. Before this equation can be used however, an expression must be developed for

each of the individual terms with respect to the temporal frequency variable f. Section 3.1 will introduce the

spectrum of the refractive index fluctuations in the atmosphere and develop the associated temporal spectrum,

IV, ( f). of the phase fluctuations ýp(;i, t). Section 3.2 will develop the aperture piston and tilt removed temporal

spectrum, WO (f). of these same phase fluctuations. Lastly. section 3.3 will develop the method by which spatial

bandwidth limitations will be accounted for in the transfer function Hs (f).

3.1 Phasefluctuationsfor the von Karmen spectrum

This section introduces the von Karman spectrum to characterize the refractive index fluctuations of

turbulent eddies in the atmosphere. From this spectrum, the spatial and temporal spectra of the wave front phase

is determined. The temporal phase spectrum will be that of the reference wave front just prior to aperture tilt

correction.

The 3-dimensional von Karmen spectrum of refractive index fluctuation has the following form:

0.033C2 2
O3(kC)- e (3.1)

whee t i te patalwae nmb k 27r . k _ 2 wn

eri = .- andT C2 is a measure of the strengh of the atmospheric

tubulence. Lo and 1, are the outer and inner scales of the atmospheric turbulence eddy size. This spectrum is a

variation of the Kolmogorov spectrum, given by:

-- 1

$n (kt) = 0.033C2k t"3 (3.2)

Goodman notes that the power in the spectrum below k, has not been characterized to date. and that the von

Karmen spectrum is only an artificial means of eliminating the pole at kt = 0 in the Kolmogorov spectrum (5).
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Given Dn (kt). we can determine the 2-dimensional spntial spectrum of the phase fluctuations of a plane

wave passing through a turbulent medium as

k A k2L\
F(k) = ,k 2L 1 - kT sin k ,)(ki) (3.3)

where k is the wave number of the incident radiation, and L is the length of the propagation path through the

turbulence (5). Taking advantage of the rapid decay of the von Karman spectrum for kt > km. Eq (3.3) can be

approximated as

F,, (k,) ;ýý 27rk 2 LD$ (k,) (3.4)

where 4D,, (kt) is defined as in Eq (3.1) and k-L << 1. This assumption is satisfied for wavelengths near the

visible spectrum and is typical of papers in this research area (5)(18)(8). Note that F(k,) defined in Eq (3.3) is

different from F ( kt) defined in Eq (3.4). We use the ý subscript to indicate a phase spectrum derived from Eq

(3.1). the von Karmen spectrum.

To develop an equivalent temporal spectrum, we assume that the structure of the inhomogeneities in the

atmosphere remains fixed as it moves with the local wind velocity iU. The wind velocity is assumed to be

perpendicular to the propagation direction of the wave front (Taylor's hypothesis of frozen turbulence). The

single-sided temporal power spectrum of the incident wave front phase. W(f). can be determined from:

W (f) = 8 dk, F k 2t (3.5)

where the derivation of Eq (3.5) is presented in Appendix A. Substituting Eq (3.4) into the above expression:

8r 80 .O33C,2,2rk2 L
d, (e 1  ( O4 +k k2 (3.6)

3 2 +
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g ( o + xk) zEq(3.6)canberewritteaas

W~p(f) = .033 2 C)2k Lv( d+ I vX+ 1) e (3.7)

where D = 2{. To make this function integrable in closed form it is necessary to omit the exponential term.

This can be done if km is assumed to be large enough that the added high frequency power is small due to the

remaining polynomial decay. Using the Beta function identity

o0 dx X-I r ()r (b)(38

J (X + 1)a+b =r(a+ b)

the single-sided temporal power spectrum is finally written as

-4

W• (f) = .033Ck 2 Lv] (f2 + 4-L-2 (3.9)

3.2 Piston and tilt removed temporal power spectrum

In the previous section. we defined the temporal spectrum of phase fluctuations for a distorted wave front.

Here, we go one step further and remove the power in the wave front associated with aperture piston and tilt.

This is necessary because adaptive optical systems are insensitive to aperture piston. Additionally, most adaptive

optical systems are designed to remove aperture tilt which accounts for between 80% and 90% of the variance

of the distorted wave front (19X14). By removing aperture pistus and tilt from the input spectrum, we can

better predict how well an adaptive optical system will correct higher order aberations as well as more accurately

predict temporal response requirements.

The removal of aperture piston and tilt can be accomplished by using Eq (2.11) and the transfer function

T, (r) developed by Greenwood and Fried (GF). In order to use Eq (2.11) and avoid the problems associated with

the use of the GF approximations to the phase difference power spectrum. W4,(F, f). discussed previously, it

is necessary to first develop an expression for W6 , ( , f ) that accounts for the vectoral nature of F. The vectoral
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nature of W6,(F, f) can be accounted for by using an approach very similia to that used by Tatarski to derive a

relation equivalent to Eq (3.5) (18).

Following Tatarski's derivation.we start by writing the phase difference structure function:

D6,(7,F) = ([P(;F, t) - (i + Ft)] X [ý(-7,t)-V(i + F - 97,t)]) (3.10)

where the two terms in brackets are the phase differences at two points separated by distance F at times t and

t + r and a frozen flow assumption has been made (18). Tatarski goes on to show that the identity

(a-b c )=1 [(a - d)2 + (b - C)2 - (a - C)2 - (b - d)2] (3.11)(a-b) (c-d)=~(.1

can be used to convert Eq (3.10) to the more useful form:

D,, (7, F-) = I{D, (F- 7r) + D,, (F+ Vr) - 2D, (0r)}1. (3.12)
2

where for a locally isotropic field Dj (F) = ([f (i'+ r) - f (9,)]2).

Utilizing the Fourier transform relationship between D6, (r, r-) and W6p (f, r),

D6a, (r, F) = 2 df cos (27rfr) Wb, (f, r, (3.13)

and the relationship between D, (F, 16r). and F•, (kt). given by Lee and Harp (12).

D,, (F, 6,r) = 4r" dkt k, [1 - Jo (k, IF- iV71l)] F,, (kt) (3.14)
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and finally Eq (3.12), a relationship between Wb,(F, f) and F, (kt) can be developed. The relation can be

expressed as follows:

210 df' cos (2irf'r) W (f',) = F 14 dk, k, [1 - J, (kt IF- Vlr)] Fp (k1 )
2

+ 4,r dk, kt [1 - Jo (k, IF+ Vrl)] F•, (k,)

- 8irj dkt kt [1 - Jo (kg-vr)] F•, (kt)} (3.15)

where D, (i) = D,, (x) has been assumed. Assigning the wind velocity a particular direction, say the positive

i direction.resultsin IF- iVrI = Y/r2 + v 2 r 2 
- 2rvrcos andIF+ 6r1 = Yr 2 + v2 r 2 + 2rvrcosO, where

0 is the angle between fi' and the x-axis. Eq (3.15) can be simplified and expressed in the following form:

2 df' cos (2Irf'r) Wh• (f', F) = 2r 0dkg ktF. (kt) X

[2J, (ktvr) - Jo (kg IF'- ir71) - Jo (kg IF+ VrT)] (3.16)

Eq (3.16) can be further simplified by Fourier transforming it with respect to r. Using the following relationship:

217 e (f + f) +[6 (f+f')+6(f - f')] (3.17)

the left hand side of Eq (3.16) is shown to equal

f0 f° [ (f + f)+ 6(f -/f')] Wb, (f', F) = Wb• (f, YO (3.18)

Finally, the relation between W6 p(F, f) and Fp (kg) can be expressed as:

Wh, (f, ) = 4rj dkt ktF, (kt)0 dr cos (27rfr) x

[2J, (kgr) - J, (kt IF- rriI) - J, (kg IF+ FrI)] (3.19)
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where the evenness of the argument in r has been exploited to simplify the integral. Although the derivation of

the phase difference spectrum is not provided in their paper. GF's approximation of the above spectrum can be

realized by setting 0 to zero and performing the integrations. Setting 0 = 0 is equivalent to assuming that Fand

6 am colinear over the integration of Eq (2.11). It should be clear at this point that such an assumption is clearly

invalid.

Having determined the proper form of W6,(f). we can proceed to evaluate the single-sided piston and

tilt removed spectrum. W, (f). using the GF method outlined in Chapter IL Recall Eq (2.11):

Weý (f ) = - -' dF Wh , (F, f ) T, (F-). (3.20)

Substituting in V6 , (f) given in Eq (3.19). the complete integral form of the piston and tilt removed spectrum is

lf...f .033C,,k,27rk ,L s-'"W;f) 21 dF 4 r dk - e "? ) dr cos(27rfr) x2 ~(k2, + k2)'0

[2Jo (kvT) - Jo (kt IF- v71) - Jo (k, IF+ fr7-I)} T (F). (3.21)

By making some convenient variable substitutions and interchanging the order of integration we arrive at

a form which simplifies the numerical integration process:

1'f = 3.04D 2 (D) (ry1 x

dt cos (21rft)I dz x dO T,, (x, 0) dk k

0 00 fo fo foo (k2± + ,)2)e

[J, (k,,- 2 + 0 ,+ 2xfcoso) + J,, (klx 2• + t2 - 2x,,o.O) - 2J (ki]. (3.22)
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where fo = LD__ k = Dkt. t = C, = , and C2 = -. By identifying the Fourier integral in Eq (3.22),

we can also define the ,;ston and tilt removed covariance as:

= 1.54D2(A) jdXz j dO TIPdk (x ( -2)2)

(k2 + C, _

P.0 (k vx 2 + t2 - i-2xi cos 0) + Jo (k vx 2 + t2 - 2xt cos 0) - 2J, (kt)] (3.23)

where t = -. Recall, we have made the following assumptions to arrive at these equations: plane wave input.

frozen flow turbulence, and single layer atmospheric turbulance. The form of this spectrum and its numerical

evaluation will be discussed in Chapter IV.

3.3 Temporal equivalent spatial filter

Recall from Chapter I our model of the adaptive optical system mean square error.

(7 = df 1 - H(f)I2 W(f) (3.24)

where WV(f) is the temporal power spectrum of the wave front phase fluctuations due to atmospheric turbulence

and H (f) is the transer function of the adaptive optical system. In sections 3.1 and 3.2, we derived the temporal

wave front spectra W (f) and Wp(f). Both of the temporal spectra can be used in Eq (3.24) to determine the

residual wave front error. We can determine the effect of aperture piston and tilt removal on a 2 by comparing the

results of Eq (3.24) evaluated for W• (f) and WO (f ). In order to make this calculation we also need to define

the system transfer function H(f).

Notice that WI, (f ). We (f). and H (f) are all functions of the temporal frequency variable f. We define

H(f) = Hs(f) • HT(f). where, as stated in Chapter L Hs(f) accounts for the spatial frequency response

of the deformable mirror and HT(f) is the temporal transfer function. We have assumed that the spatial and
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temporal transfer functions of the system are independent. This is reasonable if the computation time of the

actuator weighting functions is insignificant compared to the integration time of the wave front sensor.

In order to come up with an expression for Hs(f) based on the spatial frequency response of the

deformable mirror we define a spatial transfer function Hs (kt) that accounts for the spatial wave front correction

characteristics of the system. In section 3.1 we derived the temporal spectrum. 1, (f). from the spatial spectrum

F, (kt) using relations developed in Appendix A (see Eq (3.5)). Using these same relations, it is possible to

spatially filter F, (kt) to account for the spatial response characteristics of the deformable mirror and then convert

the result to a temporal equivalent spectrum. Ks (f). In other words, the spatial spectra of the deformable mirror

surface is modeled as Fs (kt) = F, (kH) •/fs (k,). Recall that. Eq (3.24) defines the spectral power difference

between the incident wave front phase spectrum and the spectrum of corrector motion of the deformable mirror

surface (see Fig 1.2). Using Eq (3.5). we can write the temporal equivalent spectrum, Ws(f) as:

87r f ( 2if

Finally, the temporal equivalent filter Hs(f) is equated to:

Hs(f) = V (3.26)

This approach is relatively simple if we know the form of the two dimensional spatial phase spectrum.

F( ki). Eq (3.4) describes F, (kt), the spatial frequency equivalent of W, (f) Unfortunately. we do not yet have

a spatial frequency representation. Fa(kt). for the aperture piston and tilt removed spectrum W•(f). Because

WVK, (f) varies for each point on the aperture, the random process described by lAW(f) is not WSS in the spatial

domain, and as such. F•(kt) does not exist. We recognize the requirement of stationarity when using linear

systems approaches, and therefore assume local stationarity over a subaperture centered at the point of interest.

This assumption approaches validity as the subaperture size decreases and is necessary if a linear systems
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approach in the frequency domain is to be used. Most important, this assumption allows us to hypothesize the

exitance of the aperture piston and tilt removed spatial frequency dependent spectrum F; (kt).

In order to determine the effect of Rs (kt) on a piston and tilt removed spectrum. we must first determine

F;ý (ks). To this point we have been using Eq (3.5) to transform a spatially dependent spectrum to a temporally

dependent spectrum. Here, we postulate that it is possible to perform the inverse operation and determine F;, (ki)

given W1, (f). In Appendix A, we determine the inverse of Eq (3.5) to be:

F kt dk- W ( (3.27)

With this last relation, we can determine F;, (kt), and proceed to spatially filter this spectrum for a given system

spatial response. Fs (kt) = F;,(kt) • Hs (k,). Eqs (3.25) and (3.26) can then be used to determine the temporal

equivalent filter Hs (f). and finally the residual error of our adaptive optical system is found by applying Eq

(3.24).

3.4 Summary

In this chapter we developed the mathematical methods needed to model the performance of an adaptive

optical system in the frequency domain. Section 3.1 developed a description of the spectrum of atmospheric

turbulence induced phase fluctuations. Section 3.2 developed an integral representation of the same spectrum that

accounted for piston and tilt removal across an aperture. Finally, in section 3.3, we developed the mathematical

transformations necessary to account for the temporal equivalent spatial response of a system. Fig 3.1 descibes

the process developed in this chapter pictorally. In the following chapter, these methods are used to determine

system performance for several spatial and temporal transfer functions.
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Figure 3.. LFlow diagram of the frequency domain approach used to determine system performance. (a) 2-D

spatial spectrum to equivalent temporal spectrum. Eq (3.5); (b) 2 D spatial spectrum to phase
diffrence spectrum, Eq (3.19); (c) GF transform accounting for piston and tilt removal, Eq (2.11);
(d) determination of the locally stationary piston and tilt removed spatial spectrum. Eq (3.27); (e)
Fs(kj) = F•,(kt) •H•s(kt); (f) 2-D filtered spatial spectrum to equivalent temporal spectrum.
Eq (3.5); (g) determination of the temporal equivalent spatial transfer function. Eq (2.11); (h)
spectrum of incident wavefront phase (i) determination of residual error. Eq (3.24).
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IV" Numerical Results

In this chapter we apply the methods developed in the previous chapters to determine the performance

of a theoretical adaptive optical system. Before obtaining results for system performance however, it is still

necessary to determine numerically the form of WO(f). Recall that W,(f) is the piston and tilt removed

temporal spectrum for a single point in the aperture. These calculations are very time intensive and only few

representative points on the aperture will be evaluated. Section 4.1 details these calculations and presents plots of

W;(f). In section 4.2. we asst me forms for both Hs (kt) and H-, (f). Recall. Hts (kt) accounts for the spatial

response characteristics of the deformable mirror and HT (f) for the temporal characteristics of the control loop.

In section 4.3. we evaluate Eq (3.24) to determine the residual wave front error as a function of system response

time. These results are presented along side those of Fried and Karr for comparison (2)(11).

4 1 Calculation of the piston and tilt removed spectrum

To numerically evaluate the piston and tilt removed covariances and spectra, C,-(r) and WB(f), for

single points across an aperture, we must define the following constants: C1, C,2. and P1. Recall, C, = -L. and

C2 = - and F, describes the location of the subaperture in the overall aperture. Because of the difficulty and

time involved in evaluating Eqs (3.22) and (3.23), we define a limited number of f' positions on the aperture.

We will evaluate only the covariances and spectra for 11 = 0.0. 0.225. and 0.45 where the radial distances have

been chosen to lie in a line along the same vector direction as the wind. It is expected that, the power of the

temporal wave front fluctuations will be at a maximum along this line.

Although many different values are quoted for the size of the outer scale. Coulman et. al. find that L,

has an upper limit of about 5 meters for problems associated with astronomical seeing (1). From Goodman, the

inner scale size, 1o. is on the order of about a millimeter (5). Using this information, we determine C 2 to be on

the order of 4000. The spectral power at frequencies on the order of (1,)- 1 is very small malding our analysis

insensitive to small error in estimating C2. This ratio will thus be held constant throughout our calculations.
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Fig 4.1 illustrates the effect of piston and tilt removal on the reference input spectrum. Note that the power

in the piston and tilt removed spectra increases as the magnitude of the radial position F1 increases. This is due to

the higher variance of the tilt correction as the measurment is taken closer to the edge of the aperture. Also note

that piston and tilt correction is effective up to temporal frequencies on the order of '. For temporal firequencies

greater than 1 the curves have the familia f-8 /3 slopeand the input and piston and tilt removed spectra have

the same power. Equivalently, we can determine that piston and tilt correction is effective for spatial frequencies

up to 1 using the fact that f = 2k-, (see Appendix A).

The parameter C, = -L was chosen to equal 27r. This value was chosen so that D would be on the order

of two-thirds meters for L, = 4. This has significance because we can compare our theoretical low frequency

data to that collected experimentally by Greenwood for an aperture of D = 0.6 meters (7). Greenwood's

xperimental data plot depicts the same flattening in the low firequency portion of the spectrum as shown in Fig

4.1 for r, = 0.0. This flattening occurs at a value of about 10-2 waves2Hz- 1 experimentally as compared

with our theoretical value of 0.013 waves2Hz- 1. This agreement between the experimental and theoretical data

gives us confidence in our spectrum modeling methodology. Comparing the spectra of Greenwood and Fried

described in Chapter II to those of Fig 4.1. we find that accounting for the vectoral nature of W6bw(F, f) has a

significant effect for low frequencies and and none for frequencies following the f-3/3 asymtote. Recall from

Chapter II, the GF piston and tilt removed spectra follow an f4/3 asymtote for temporal frequencies less than -L

In Fig 4.2. we allow the aperture size to increase to that of the outer scale so that C1 = - 1. This

figure shows that aperture piston and tilt correction are not as effective at removing phase distortions when the

aperture size becomes large relative to the outer scale. When the period of a particular spatial frequency is less

than the aperture size it is unaffected by piston and tilt correction. Thus as the aperture grows larger, the power in

correspondingly lower spatial frequencies remains unaffected by aperture piston and tilt correction. In Fig 4.1.

piston and tilt correction removes over 90% of the of the spectral power present in the reference wave front at

r, = 0.0; whereas, only 33% of the spectral power is removed in Fig 4.2. When comparing the spectra of Figs

4.1 and 4.2. it is important to remember that the power is scaled by the size of the aperture. Taking D into
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account, the input spectra of both figures have the same value. Realizing this, it is clear that a smaller percentage

of the input power spectra is removed in as D approaches L,.

4.2 System performwnce

In this section, we specify the transfer functions. H(f), used to represent the the spatio-temporal response

characteristics of several adaptive optical systems. Recall that H1(f) = Hs(f) • HT(f) and that Hs(f) is

determined from ls (kt) using methods outlined in ChapteriM The spatial transfer function. !Hs (k,), is defined

in subsection 4.2.1 and the temporal transfer function. HT (f), in subsection 4.2.2.

4.2.1 Spatial filter. A deformable mirror's spatial transfer function, Hs (kt), can be characterized by

the size of its subapertures for a segmented type of device or by the distance between actuators and the

actuator influence function for continuous surface type device (13)(19)(10). In this investigation, we idealize

the performance of the adaptive optical system's deformable mirror by approximating its spatial frequency

performance to be:

fHs (k)= 1, -ktid (4.1)
0, jkj> l>

where d is the diameter of the deformable mirror's subapertures. This estimate of deformable mirror performance

is consistant with Nyquist sampling rates and has been chosen for simplicity. Additinally, Tyson finds that spatial

filtering models essentially the same as Eq (4.1) are adequate for characterizing the performance of adaptive

optical systems (19). This filter choice also helps us avoid the issue of a nonstationary ý(t). Recall, it is the

inherent piston and tilt removal of the adaptive optical system that causes O(t) to be non-stationary. Because

piston and tilt removal only affects spatial frequencies below kt = 5-, we can consider those above kt = D

to be stationary. Because our chosen Hs (kt) only affects frequencies greater than kt = we consider our

linear systems approach to be valid.

At this point, we are ready to determine the temporal equivalent transfer function Hs(f). Using the

methods des.ribed in section 3.3. we could determine F•(kt) and FO(kt) for the spectra plotted in Fig 4.1,
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Figure 4.1. Temporal (A) covariances. CO, and (B) spectra, W. and We. of wave fmont phase fluctuations for

thecaseof -L = 27r. The piston and tilt removed spectrm, WO, has been evaluated at IFI = 0.0.
0.225D, and 0.45D along the direction of the wind.
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Figure 4.3. Temporal equivalent spatially filtered spectrum Ws(f) depicting the effect of f-s(k,)
rect(-k-) for R = 2. 5, 10, and 20. The circled error is the difference between Ws(f)

d
and our approximation of the spatial filtering effect, rect -W(f).

multiply by Hs (kt). and determine Hs(f) using Eqs (3.25) and (3.26). Instead. we choose to simplify this

procedure and model the temporal equivalent spatial filtering by

S1, iI5< Xv
Hs (f) -2D (4.2)

Xv0, 1fh > 2DX.

where X = D . The spatial cutoff point of Hs(f) is determined from f = _k_, (established in Appendix A).

Fig 4.3 shows this to be a reasonable approximation for a representative number of 2 values.

To make a gross estimate of the maximum error involved in approximating Hs(f) by Eq (4.2), we note

from Appendix A:

W (f) = 4w dK KF (K) (43

(K 2 - ( L) 2) 1/2

From Eq (4.3). we can deduce that the spectral power at any temporal frequency f is the weighted sum of

the spatial frequencies equal to or above Kt = q Because the spatial filter described by Eq (4.1) rejects

frequencies above some ko = . all temporal frequencies will suffer a loss in spectral power associated with
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the spatial frequency band from k,, to infinity. Additionally. since the weighting of these spatial frequencies

is greatest for f -o. . we can quantify the approximation error over all temporal frequencies. from 0 to

leo.as W(fh o) x f, ., From Fg4.1 and Eq(3.9). wedetermine that W(f,,) = (f,, )-3. A conservative

estimate of the maximum error involved in assuming Hs (f) has the form of Eq (4.2) is (f ,)-

4.2.2 Temporalfilter. To characterize the temporal response of our theoretical adaptive optical system,

we assume that the dominant delay in the actuator control loop is the integration time of the wave front sensor.

An intuitive linear systems approximation of this integration process is given by the following temporal impulse

response:

hT(t) = rect( T) . (4.4)

Where r is the average delay between wave front sensing and actuator positioning and 27 is the length of the

wave front sensor integration. In the Fourier domain, we can write Eq (4.4) as

HT(f) = sinc(2lrfr)e-&2w/ (4.5)

The phase delay term in HT (f) accounts for the deconrelation between the sensed wave front and the corrected

wave front, while, the sinc term limits the temporal bandwidth of the wave front sensor simulating the smoothing

effect of the integration process.

4.3 Calculation of residual error

In this section, we will use Eq (3.24) to model the residual erro of adaptive optical systems descibed by

the spatial and temporal transfer functions of section 4.2. The temporal frequency spectra of rig 4.1 will be used

as the input spectra. W(f). to Eq (3.24). These spectra include three that account for aperture piston and tilt

removal. IV'(f). for points located at radial distances r, = 0.0. 0.225D, and 0.45D along the direction of/F

and one that assumes no piston or tilt correction. W (f ). All plots of system performance depict wave front

error measured in waves versus time delay of the system. The wave front error has been normalized by ( D
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Figure 4.4. Residual wave front error due to finite system delay, (j H (f)1 = 1).

and the time delay, r, has been normalized by 2. We are now ready to evaluate Eq (3.24) numerically and

determine the performance of our system.

4.3.1 The effect ofphase delay. In Fig 4.4, H(f) has been simplified to account only for the temporal

delay of the system, HT(f) = e-j2xIT and IH(f) I = 1. This models the case of perfect spatial wave front

correction, d = 0 for the deformable mirror subaperture size, and neglects the effects of temporal bandwidth

limitations caused by the integration process of the wave front sensor. We model this simple case so that the

individual effects of spatial and temporal bandwidth limitations and temporal delay can be distinguished in later

plots. The curves of Fig 4.4 plot wave front erro for five different cases. The three lower curves are for the

piston and tilt removed input spectra W•(f). The upper two curves assume no piston or tilt correction. The

lower of these last two is for the input spectrum W•(f) derived in section 3.1. Recall. Wp(f) was derived

assuming a von Karmen index of refraction fluctuation power spectrum. The uppermost curve is a plot of the FK

result, (see Eq (1.1). FK assumed a Kolmogorov index of refraction fluctuation power spectrum. The FK result

can be written in closed form as

a2 = 6.885 ,,/ ( (4.6)
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where Eq (1.1) has been rewritten in terms of r,,. For a plane wave propagating through a single turbulence

layer, the Greenwood frequency in Eq (1.1) can be expressed as fc = 0.4277•- (6)(20).

We can make several observations concerning Fig 4.4. First, the error described by the curves for

= 0.0, 0.225D. and 0.45D and the reference wave front seems to approach some limiting error as the time

delay increases. This is due to the sensed wave front becoming uncomelated with the incoming wave front as

the time between sensing and correction increases. The small increase in error as delay time gets longer is due

to the finite power, (see Fig 4.1 ). at very low frequencies in both Wp(f) and We(f). The upper limit on the

error is equal to twice the power under the respective spectrum. Second, the error described by the FK result is

higher than that for the piston and tilt included reference wave front, W, (f). This is due to the FK assumption

of a Kolmogorov spectrum which has power approaching infinity at low temporal frequencies whereas our

assumption of a von Karmen spectrum limits the power in W,(f) to finite values at all frequencies. The large

increase in error as delay time gets longer for the FK result is due to the infinite power at very low frequencies

of the Kolmogorov spectrum.

4.3.2 The effect of limited temporal bandwidth. In Fig4.5 we include the effect of the integration process

to the phase delay effects depicted in Fig 4.4. As stated previously, the integration process of the wave front sensor

affects the bandwidth of HT(f). Fig4.5 still assumes the case of infinite spatial bandwidth, Hs(f) = 1. As the

integration time of the wave front sensor becomes longer, the temporal bandwidth of HT(f) becomes smaller.

This decrease in the temporal bandwidth of HT(f) is best evidenced for long time delays and is negligble for

very small r due to the small amount of power in W,(f) at high frequencies. As r becomes large, the rms

error of Fig 4A is equal to approximately vi2 times the rms error of Fig 4.5. This difference occurs because the

sensed wave front and the corrected wave front become uncorrelated as the time between sensing and correction

increases. This loss of correlation for large r results in o,2 = 0,dwe 2 2nsed+ O'orre~d were s~ensed ::týOcorrected

for IHT(f)I = 1. For the case of the bandwidth limited transfer function. IHT(f)I = sinc(27rfr)., fsensed2

approaches zero for large T. Notice that Figs 4.4 and 4.5 are plotted for a and not a 2. The difference between

the two plots for a specific curve will thus be V2.
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Figure 4.5. Residual wave front error for system temporal response HT(f) where I Hs(f) = 1.

4.3.3 The effect of su' perture size. Figs 4.6 and 4.7 account for the spatial bandwidth limitations of the

deformable mirror in addition to the effects of the system temporal response described in subsections 4.3.1 and

4.3.2. The teinporal equivalent spatial bandwidth of Hs(f) is related to subaperture size by Eq (4.2). Fig 4.6

depicts he effect of an aperture to subaperture size ratio of D = 10 on system performance. Comparing the

curves of Fig 4.6 with those of Fig 4.5. we note that the subaperture size of the deformable minor has little

effect on the system for large 7. As the temporal response of the system becomes faster though, the finite size of

the subapertures becomes the limiting factor of the system's wave front correction performance. For k = 10.

Fig 4.6 shows the scaled error in waves to be just less than 0.01. Fig 4.7 shows that as the subaperture size

grows larger the error also increases. For very limited correction. D. = 2, the scaled error plotted in Fig 4.7 is

approximately 0.033 waves.

From Fig 4.7. we can determine the slowest system response time that takes full advantage of our system's

spatial response. This point will be located at the point on the curve where significant reduction in residual error

is no longer achieved for faster response time. We will refer to this point as ",eig,. Comparing our results

with those of Fried and Karr, we find that the 7rdeig, predicted by our study is similar in magnitude to that of

the FK result. The coincidence of our result and that of Fried and Karr becomes closer as we approach the FK
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Figure 4.6. Residual wave front error for system response H(f) for D = 10.

assumption of L = oc. The largest discrepancies between the FK result and the results of this investigation
d

will be for partial correction systems where L is less than around five. Fig 4.7 shows that the FK predicted

temporal response requirement is almost double our predicted requirement of Tde sign ' for: -

for partial correction systems, the FK result does not predict temporal response requirements as effectively as

for higher order corfrcting systems.

From Figs 4.6 and 4.7. we also determine that accounting for piston and tilt removal is not necessary

if we are interested in the area of the the curves near reign. Fig 4.7 shows that rdesign will always be less

than ; - --D Corresponding values of r in Fig 4.6 show the difference between residual error for W, and for

the three curves representing IVV is very small. This difference is greatest for the W,, curve representing the

center of the aperture but would be less if we looked at an average WEý over the entire aperture. Recall, we only

evaluated WP at three points in the aperture, and that although the point at (r, = 0.45D, 0 = 0) has the worst

case spectrum, the point at the center. ri = 0, is best case.
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greater than twice that predicted by the EK result. This agreement of our error predictions with those of Fied

and Karr as well as the reflection of expected performance trends validates our results.
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V. Conclusions

The primary objective of this investigation was to develop a frequency domain approach, using linear

systems methods, that describes performance effects of an adaptive optical system's temporal response taking

into account aperture piston and tilt removal and spatial bandwidth limitaticns due to finite subaperture size. We

modeled system performance as the mean square residual phase error of the corrected wave front p , (i, t):

00 -- df 11 - H(f)12 W(f). (5.1)

In Chapter In, we developed spectral representations for the wave front incident on the deformable mirror, W(f),

and also for the system transfer function H(f). The unique aspect of this model is the relative ease with which

performance characteristics of different spatial and temporal system response functions can be investigated.

Although methods were developed in section 3.3 to account for an arbitrary transfer function H(f), section

4.2.1 introduced idealized temporal equivalent spatial transfer functions that greatly simplified the numerical

evaluation process. Using these spatial filtering concepts, the effects of limited system spatial bandwidth

can determined more efficiently than with those of GF. The simple multiplication involved in accounting for

the temporal characteristics of a system make this model especially useful for comparing the performance of

different temporal transfer functions.

The secondary objective was to address when use of our approach yields substantially different results

than those of Fried and Karr. Section 4.3 shows that for r greater than L the FK result does not provide

adequate modeling of system performance. However, response times of systems that take full advantage of of

the deformable mirror spatial response are less D As stated in section 4.3, we call this temporal delay time

7des•gn- For a system with minimum spatial response, D = 2, the difference between the FK result and that

predicted by our approach for Tde,,ig is less than a factor of two. This agreement, in predicting the residual

error for rdesiqn of our approach and that of Fried and Karr validates our results. Although the FK result is more

easily evaluated, use of the methods developed in this thesis provide more insight into the performance trade-offs

of systems having different temporal and spatial characteristics.
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Additionally, we found that our approach could be significantly simplified if we were interested in response

times less than o ID r near Tdeig,. The most difficult part of our approach was developing the piston and

tilt removed spectra and a method to spatially filter this spatially nonstationary spectra, and in section 4.3.3, we

found that piston and tilt removal had little effect on the error predictions generated by our approach for response

times less than 0 -D. Thus, our approach becomes numerically more appealing while still providing the ability

to compare different temporal and spatial parameters. This is especially relevant for the case of large apertures.

As found in section 4.1, piston and tilt removal have significantly less effect on the spectra of phase fluctuations

foi aperture sizes aproaching the outer scale size of the atmosphere, L .

In summary, the objective of developing a frequency domain model of adaptive optical system performance

has been met, and although the FK result adequately predicts the residual error for time delays of interest, our

approach determines the value of the maximum time delay that sill takes full advantage of the spatial response

of the deformable mirror.
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Appendix A.

This appendix develops the methodology that will be used to transform a given temporal spectrum to an

equivalent two dimensional spatial frequency spectrum and the reverse. Our development follows Tatarski's

almost identical development for the three dimensional spatial spectrum (18).

We begin this development by defining the two dimensional spatial single dimension temporal correlation

function by:

B (F, -r) =((, t) P (i + iF, t + 7)) (A.1)

where j (1, t) is a WSS spatio-temporal random field and F = (Azx, Ay). Using Taylor's frozen flow assump-

tion. the temporal changes in the field ; Z, t) can be represented as simple spatial shifts:

O(;, t + 7) = o(;F- V7, t) . (A.2)

where F repesents the magnitude and direction of the field flow. Substituting Eq (A.2) into Eq (A.1):

B (F, r) = B (F'- i) (A.3)

The three dimensional spectrum of B (F - t r) can be found through the Fourier transform relation:

u (), f2111 dFdr -j(Zr+2 f T)B (F- ir) (A.4)

Performing the spatial transform.

U (9, f) = J dr e-j 2 fT e-j TF (g) (A.5)
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where F (W) represents the two dimensional spatial spectrum of the field p (;F, t). The important relation between

the spatio-temporal spectrum and the spatial spectrum for a frozen flow field is found to be:

u(W,f) =6 (f+ 9i) F(9). (A.6)

By writing B (F, 7) in terms of its Fourier transform,

B (i?, r) = JJ ddf ej(W F+2rf1 -)u (9, f), (A.7)

we can begin to develop a relationship between the temporal frequency spectrum.

i = f df ei2fTB (7) (A.8)M; =fI

and the two dimensional spatial spectrum, F(k). Letting the spatial difference vector Fin B (F, r) go to zero.

the temporal covariance function can be written as:

L(O,r)= B(r)= f df e2Tf1 [ifdCu (,f)], (A.9)

and the relation between the temporal spectrum and the spatio-temporal spectrum is found to be:

W(f) = u (W, f). (A.10)

Substituting Eq (A.6) into Eq (A.10) and switching to a polar integral representation:

W()= 0dK X dO6 (f+ F(). (A.11)
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Assuming u (W, f) = u (K, f). and utilizing the evenness of the 0 integration, the temporal frequency spectrum

can be rewritten as:

W(f) = f d F(K) 2 d06 (f+ cos0o) (A.12)

Making a change in variables,

W (f) =2 dr KF (K) LA d. 2 7r 6 (A + [(A.13)01 (1 ýl- '2)1/2 tev KV

whereA = cos0 andtherelation6 (f+ + ,-k) = 2r 6 A + 2r) hasbeenused. This simplifiesto

1/"dKKF() (A.14)

"V (2 - __L

Making the variable substitution K = k + (F '2 2 we write the equivalent form

W W = 8r dh, F ( 2 + (.)2 (A.15)

Eqs (A.14) and (A.15) will be used as the means to find the temporal equivalent spectrum of a filtered isotropic

two dimensional spatial spectrum in Chapter M.

For the three dimensional spatial spectrum, Tartarski finds an expression equivalent to that derived in Eqs

(A.14) and (A.15) for a two dimensional spatial spectrum.

W I K =hK <D (K) (A.16)
V LvIf

where $b (K) represents an isotropic three dimensional spatial spectrum. Using the relation (17)

d 8F(OW) d O di (A
dK F(,w) = d---+ F (02, W) -- F (61, w)-(A.1
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Tatarski finds the inverse relation to be

't v2 W,(tev)8() 8703 K . (.18

Unfortunately, Eq (A.17) can not be similiarly applied to Eq (A.14) to find the temporal spectrum equivalent

of the isotropic two dimensional spatial spectrum. This is because of the more complex integral argument of Eq

(A.14) involving the temporal frequency variable f. Knowing the three dimensional spatial spectrum equivalent

of the temporal spectrum from Eq (A.1 8), a relationship between 4) (K) and F (K) is developed instead. Given

the Fourier transform relation:

F V) V-cs(9fFf4W (A. 19)

where r (F) is a three dimensional spatial correlation and F = (Ax, Ay, Az). the two dimensional correlation

can be found from:

F (Ax, Ay, 0) = B (Ax, Ay) JJ dtdcy Cos (IC,AX + tCAy) [J 1 4 (W)] (A.20)

The relationship between the two dimensional and three dimensional spatial spectrum is found to be:

F(x, KY; z) =jIz 4 (K., KY z) . (A.21)

Fmnally. we determine the inverse relation of Eq (A.15) by substituting Eq (A.18) in Eq (A.21):

F (o -JdK, V-147' (Vj7 -2  ) (A.22)

where$ (K)= +( ' 2) and K2 = tz2 +2

In summary. this section has developed the mathematical means to convert a temporal spectrum to an

equivalent isotropic two dimensional spatial spectrum through the application of Eqs (A.1 8) and (A.21) and then
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revert back to an equivalent temporal spectrum by Eq (A.14). The necessary assumption for these transformations

was only that of frozen field flow.
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